3.326 \(\int \frac {\sqrt {\sec (c+d x)}}{(a+a \cos (c+d x))^2} \, dx\)

Optimal. Leaf size=149 \[ -\frac {\sin (c+d x) \sqrt {\sec (c+d x)}}{a^2 d (\sec (c+d x)+1)}+\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 a^2 d}+\frac {\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d}-\frac {\sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d (a \sec (c+d x)+a)^2} \]

[Out]

-1/3*sec(d*x+c)^(3/2)*sin(d*x+c)/d/(a+a*sec(d*x+c))^2-sin(d*x+c)*sec(d*x+c)^(1/2)/a^2/d/(1+sec(d*x+c))+(cos(1/
2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/
2)/a^2/d+2/3*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^
(1/2)*sec(d*x+c)^(1/2)/a^2/d

________________________________________________________________________________________

Rubi [A]  time = 0.24, antiderivative size = 149, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.304, Rules used = {3238, 3816, 4019, 3787, 3771, 2639, 2641} \[ -\frac {\sin (c+d x) \sqrt {\sec (c+d x)}}{a^2 d (\sec (c+d x)+1)}+\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 a^2 d}+\frac {\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d}-\frac {\sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d (a \sec (c+d x)+a)^2} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[Sec[c + d*x]]/(a + a*Cos[c + d*x])^2,x]

[Out]

(Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a^2*d) + (2*Sqrt[Cos[c + d*x]]*EllipticF[(c
 + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*a^2*d) - (Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(a^2*d*(1 + Sec[c + d*x])) - (
Sec[c + d*x]^(3/2)*Sin[c + d*x])/(3*d*(a + a*Sec[c + d*x])^2)

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 3238

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^(n_.))^(p_.), x_Symbol] :> Dist
[d^(n*p), Int[(d*Csc[e + f*x])^(m - n*p)*(b + a*Csc[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x
] &&  !IntegerQ[m] && IntegersQ[n, p]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3787

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 3816

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[(d^2*
Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n - 2))/(f*(2*m + 1)), x] + Dist[d^2/(a*b*(2*m + 1)), In
t[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 2)*(b*(n - 2) + a*(m - n + 2)*Csc[e + f*x]), x], x] /; Fr
eeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -1] && GtQ[n, 2] && (IntegersQ[2*m, 2*n] || IntegerQ[m]
)

Rule 4019

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(d*(A*b - a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n - 1))/
(a*f*(2*m + 1)), x] - Dist[1/(a*b*(2*m + 1)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 1)*Simp[A
*(a*d*(n - 1)) - B*(b*d*(n - 1)) - d*(a*B*(m - n + 1) + A*b*(m + n))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b,
d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] && GtQ[n, 0]

Rubi steps

\begin {align*} \int \frac {\sqrt {\sec (c+d x)}}{(a+a \cos (c+d x))^2} \, dx &=\int \frac {\sec ^{\frac {5}{2}}(c+d x)}{(a+a \sec (c+d x))^2} \, dx\\ &=-\frac {\sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \sec (c+d x))^2}-\frac {\int \frac {\sqrt {\sec (c+d x)} \left (\frac {a}{2}-\frac {5}{2} a \sec (c+d x)\right )}{a+a \sec (c+d x)} \, dx}{3 a^2}\\ &=-\frac {\sqrt {\sec (c+d x)} \sin (c+d x)}{a^2 d (1+\sec (c+d x))}-\frac {\sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \sec (c+d x))^2}-\frac {\int \frac {-\frac {3 a^2}{2}-a^2 \sec (c+d x)}{\sqrt {\sec (c+d x)}} \, dx}{3 a^4}\\ &=-\frac {\sqrt {\sec (c+d x)} \sin (c+d x)}{a^2 d (1+\sec (c+d x))}-\frac {\sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \sec (c+d x))^2}+\frac {\int \sqrt {\sec (c+d x)} \, dx}{3 a^2}+\frac {\int \frac {1}{\sqrt {\sec (c+d x)}} \, dx}{2 a^2}\\ &=-\frac {\sqrt {\sec (c+d x)} \sin (c+d x)}{a^2 d (1+\sec (c+d x))}-\frac {\sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \sec (c+d x))^2}+\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{3 a^2}+\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx}{2 a^2}\\ &=\frac {\sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a^2 d}+\frac {2 \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{3 a^2 d}-\frac {\sqrt {\sec (c+d x)} \sin (c+d x)}{a^2 d (1+\sec (c+d x))}-\frac {\sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \sec (c+d x))^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 1.21, size = 242, normalized size = 1.62 \[ \frac {e^{-i d x} \cos \left (\frac {1}{2} (c+d x)\right ) \sqrt {\sec (c+d x)} \left (\cos \left (\frac {1}{2} (c+3 d x)\right )+i \sin \left (\frac {1}{2} (c+3 d x)\right )\right ) \left (-i e^{-i (c+d x)} \sqrt {1+e^{2 i (c+d x)}} \left (1+e^{i (c+d x)}\right )^3 \, _2F_1\left (\frac {1}{2},\frac {3}{4};\frac {7}{4};-e^{2 i (c+d x)}\right )+i (i \sin (2 (c+d x))+14 \cos (c+d x)+5 \cos (2 (c+d x))+5)+16 \cos ^3\left (\frac {1}{2} (c+d x)\right ) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \left (\cos \left (\frac {1}{2} (c+d x)\right )-i \sin \left (\frac {1}{2} (c+d x)\right )\right )\right )}{6 a^2 d (\cos (c+d x)+1)^2} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[Sec[c + d*x]]/(a + a*Cos[c + d*x])^2,x]

[Out]

(Cos[(c + d*x)/2]*Sqrt[Sec[c + d*x]]*(((-I)*(1 + E^(I*(c + d*x)))^3*Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeometr
ic2F1[1/2, 3/4, 7/4, -E^((2*I)*(c + d*x))])/E^(I*(c + d*x)) + 16*Cos[(c + d*x)/2]^3*Sqrt[Cos[c + d*x]]*Ellipti
cF[(c + d*x)/2, 2]*(Cos[(c + d*x)/2] - I*Sin[(c + d*x)/2]) + I*(5 + 14*Cos[c + d*x] + 5*Cos[2*(c + d*x)] + I*S
in[2*(c + d*x)]))*(Cos[(c + 3*d*x)/2] + I*Sin[(c + 3*d*x)/2]))/(6*a^2*d*E^(I*d*x)*(1 + Cos[c + d*x])^2)

________________________________________________________________________________________

fricas [F]  time = 1.50, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {\sec \left (d x + c\right )}}{a^{2} \cos \left (d x + c\right )^{2} + 2 \, a^{2} \cos \left (d x + c\right ) + a^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(1/2)/(a+a*cos(d*x+c))^2,x, algorithm="fricas")

[Out]

integral(sqrt(sec(d*x + c))/(a^2*cos(d*x + c)^2 + 2*a^2*cos(d*x + c) + a^2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {\sec \left (d x + c\right )}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(1/2)/(a+a*cos(d*x+c))^2,x, algorithm="giac")

[Out]

integrate(sqrt(sec(d*x + c))/(a*cos(d*x + c) + a)^2, x)

________________________________________________________________________________________

maple [A]  time = 0.65, size = 257, normalized size = 1.72 \[ \frac {\sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (12 \left (\cos ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-4 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (\cos ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+6 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \left (\cos ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-16 \left (\cos ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+3 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1\right )}{6 a^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^(1/2)/(a+a*cos(d*x+c))^2,x)

[Out]

1/6*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(12*cos(1/2*d*x+1/2*c)^6-4*(sin(1/2*d*x+1/2*c)^2)^
(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*cos(1/2*d*x+1/2*c)^3+6*(sin(1/2*
d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*cos(1/2*d*x+1/2*c)^3*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2
))-16*cos(1/2*d*x+1/2*c)^4+3*cos(1/2*d*x+1/2*c)^2+1)/a^2/cos(1/2*d*x+1/2*c)^3/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2
*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {\sec \left (d x + c\right )}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(1/2)/(a+a*cos(d*x+c))^2,x, algorithm="maxima")

[Out]

integrate(sqrt(sec(d*x + c))/(a*cos(d*x + c) + a)^2, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}}{{\left (a+a\,\cos \left (c+d\,x\right )\right )}^2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1/cos(c + d*x))^(1/2)/(a + a*cos(c + d*x))^2,x)

[Out]

int((1/cos(c + d*x))^(1/2)/(a + a*cos(c + d*x))^2, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {\int \frac {\sqrt {\sec {\left (c + d x \right )}}}{\cos ^{2}{\left (c + d x \right )} + 2 \cos {\left (c + d x \right )} + 1}\, dx}{a^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**(1/2)/(a+a*cos(d*x+c))**2,x)

[Out]

Integral(sqrt(sec(c + d*x))/(cos(c + d*x)**2 + 2*cos(c + d*x) + 1), x)/a**2

________________________________________________________________________________________